Graphs — Breadth First Search

CSE 2011
YORKHJ _1- Last Updated 2014-03-18 8:09 AM
EEEEEEEEE Prof. J. Elder

UUUUUUUUUU

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph

» Unweighted Shortest Path: Proof of Correctness

CSE 2011
YORKHJ _2- Last Updated 2014-03-18 8:09 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph

» Unweighted Shortest Path: Proof of Correctness

CSE 2011
YORKE} _3- Last Updated 2014-03-18 8:09 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Breadth-First Search

» Breadth-first search (BFS) is a general technique for traversing a graph
» A BFS traversal of a graph G

O Visits all the vertices and edges of G
[Determines whether G is connected
O Computes the connected components of G

O Computes a spanning forest of G
» BFS on a graph with |V] vertices and |E| edges takes O(|V|+E|) time

» BFS can be further extended to solve other graph problems
O Cycle detection

O Find and report a path with the minimum number of edges between two
given vertices

CSE 2011
YORKHJ _4- Last Updated 2014-03-18 8:09 AM
“““““““““ > Prof. J. Elder

IIIIIIIIII

BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
for each vertex u € V[G]
colorfu] « BLACK //initialize vertex
colour[s] « RED
Q.enqueue(s)
while Q # 9
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
colour[v] <« RED
Q.enqueue(v)
colour[u] « GRAY

CSE 2011
UYQBSE ' Prof. J. Elder -5- Last Updated 2014-03-18 8:09 AM

UUUUUUUUUU

BFS is a Level-Order Traversal

» Notice that in BFS exploration takes place on a
wavefront consisting of nodes that are all the same
distance from the source s.

» We can label these successive wavefronts by their
distance: L, L4, ...

CSE 2011
YORKE} _6- Last Updated 2014-03-18 8:09 AM
””””””””” Prof. J. Elder

IIIIIIIIII

BFS Example

G undiscovered
0 discovered (on Queue)

finished

- —

unexplorededge @ ---7ES

—_—p discovery edge

— = = p Cross edge

—
-~

\

1

1

1

1

1

—

—-————

CSE 2011
YORKHJ _7- Last Updated 2014-03-18 8:09 AM
“““““““““ > Prof. J. Elder

IIIIIIIIII

BFS Example (cont.)

- ———

- ——

- ——

- ———

N ———————

N ———————

CSE 2011

Last Updated 2014-03-18 8:09 AM

Prof. J. Elder

£

s u
TY

BFS Example (cont.)

- ——

- ———

- ———

CSE 2011

Last Updated 2014-03-18 8:09 AM

Prof. J. Elder

£

rRor u
1 TY

Properties

Notation
G,: connected component of s

Property 1

BFS(G, s) visits all the vertices and
edges of G,

Property 2

The discovery edges labeled by
BFS(G, s) form a spanning tree T, of
G

A

Property 3
For each vertex vin L;

O The path of T, from stovhasi L,
edges

4 Every path from s to v in G, has at
least i edges

_—————

YORK ' CSE 2011

,,,,,,,,, : o 1 e -10 - Last Updated 2014-03-18 8:09 AM

IIIIIIIIII

Analysis

» Setting/getting a vertex/edge label takes O(1) time

» Each vertex is labeled three times
O once as BLACK (undiscovered)

O once as RED (discovered, on queue)
[once as GRAY (finished)

» Each edge is considered twice (for an undirected graph)
» Each vertex is placed on the queue once

» Thus BFS runs in O(|V]+|E]|) time provided the graph is
represented by an adjacency list structure

CSE 2011
YORKRE| 11 - Last Updated 2014-03-18 8:09 AM
””””””””” Prof. J. Elder

IIIIIIIIII

END OF LECTURE
APRIL 1, 2014

CSE 2011
YORKRE| _12- Last Updated 2014-03-18 8:09 AM

IIIIIIIIII
UUUUUUUUUU

Applications

» BFS traversal can be specialized to solve the
following problems in O(|V]+|E|) time:

dCompute the connected components of G
dCompute a spanning forest of G
Find a simple cycle in G, or report that G is a forest

dGiven two vertices of G, find a path in G between

them with the minimum number of edges, or report
that no such path exists

CSE 2011
YORKE} 13- Last Updated 2014-03-18 8:09 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Outline

» BFS Algorithm

> BFS Application: Shortest Path on an unweighted
graph

» Unweighted Shortest Path: Proof of Correctness

CSE 2011
YORKRE| 14 Last Updated 2014-03-18 8:09 AM
EEEEEEEEE Prof. J. Elder

IIIIIIIIII

Application: Shortest Paths on an Unweighted Graph

» Goal: To recover the shortest paths from a source node
S to all other reachable nodes v in a graph.

1 The length of each path and the paths themselves are returned.

> Notes:

O There are an exponential number of possible paths
O Analogous to level order traversal for trees

O This problem is harder for general graphs than trees because of
cycles!

CSE 2011
YORKHJ _15- Last Updated 2014-03-18 8:09 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Breadth-First Search

Input: Graph & =(V,E) (directed or undirected) and source vertex se V.

Output:
d[v]= shortest path distance J(s,v) from s to v, Vve V.
z[v]=u such that (u,v) is last edge on a shortest path from s to v.

> l|ldea: send out search ‘wave’ from s.

> Keep track of progress by colouring vertices:
4 Undiscovered vertices are coloured black
O Just discovered vertices (on the wavefront) are coloured red.

O Previously discovered vertices (behind wavefront) are coloured grey.

CSE 2011
YORKE} - 16 - Last Updated 2014-03-18 8:09 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance 6[u] and
n[u] = predecessor of u on shortest path from s to each vertex u in G
for each vertex u e V[G]
d[u] ¢« o
r[u] < null
color[u] = BLACK //initialize vertex
colour[s] <« RED
d[s]< 0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour[v] <« RED
d[v] « d[u]+1
w[v] < u
Q.enqueue(v)
colour[u]l < GRAY

CSE 2011
YORKRE| 17 - Last Updated 2014-03-18 8:09 AM
AR AREARE Prof. J. Elder

IIIIIIIIII

BFS

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

o 00 O o

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

o 00 O o

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

= O O 00 o

Last Updated 2014-03-18 8:09 AM

BFS

Found
q Not Handled
) Queue
/ /lx
a‘

Lo X
e f < /" < b
f 7 f \l C
] f
! e

-23 -1 Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

BFS

Found
q Not Handled
7 /]x Queue
a‘
Lo N
< Iz
C*O/‘f/ 1S C
\ > S NE;
! ¢
h J
\ /

CSE 2011 k.
YORKHJ -25-] Last Updated 2014-03-18 8:09 AM
””””””””” Prof. J. Elder

IIIIIIIIII

BFS

Found
Not Handled
Queue

C
f
m
e
J

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

f
m
?’
)
h

1

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

BFS

Found
Not Handled
Queue

®
YORK ' CSE 2011 k - i

Prof. J. Elder - 33 -1 Last Updated 2014-03-18 8:09 AM

IIIIIIIIII
UUUUUUUUUU

BFS

Found
Not Handled
Queue

Last Updated 2014-03-18 8:09 AM

BFS

Found
q Not Handled
’ Queue
/ 1\
a.
/ d / e

. G
I)
CSE 20174
YORKE} -35-] Last Updated 2014-03-18 8:09 AM
””””””””” Prof. J. Elder

IIIIIIIIII

BFS

Found
q Not Handled
T Queue
/ .
dq / ‘\\ K
° d / T ¢
7~
A
‘bo{ 7 t \l
A\ / A
21
ho 4// /
“m
1(./“ o
YORKQEJ grsof iog dor -36-] Last Updated 2014-03-18 8:09 AM

IIIIIIIIII

BFS

Found
q Not Handled
’ Queue
/ 1\
a.
/ d / e

/
\

-
I °
CSE 20174
YORKHJ -37-] Last Updated 2014-03-18 8:09 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Breadth-First Search Algorithm: Properties
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u e V[G]

Z{Z}::u" » Qs a FIFO queue.

color[u] = BLACK //initialize vertex > Each vertex aSSlgned flnlte d
colourfs] < RED value at most once.
d[s] <0
Q.enqueue(s) » Q contains vertices with d
while Q = @ values {j, ..., i, i+1, ..., i+1}

u < Q.dequeue()

o el e AGT el Etas () » d values assigned are

if color[v] = BLACK r_nonotonically increasing over
colour[v] « RED time.
d[v] <« d[u]+1
nlv]<u
Q.enqueue(v)
colour[u]l < GRAY
YORK ' oot . b1 - 38 - Last Updated 2014-03-18 8:09 AM

Prof. J. Elder

IIIIIIIIII

Breadth-First-Search is Greedy

» Vertices are handled (and finished):
O in order of their discovery (FIFO queue)

J Smallest d values first

CSE 2011
YORKE} -39- Last Updated 2014-03-18 8:09 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph

» Unweighted Shortest Path: Proof of Correctness

CSE 2011
YORKHJ _40- Last Updated 2014-03-18 8:09 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Correctness

Basic Steps:

o~

The shortest path to u & there 1s an edge
has length d fromu to v

There 1s a path to v with length d+1.

CSE 2011
YORKRE| _41- Last Updated 2014-03-18 8:09 AM
“““““““““ Prof. J. Elder

IIIIIIIIII

Correctness: Basic Intuition

» When we discover v, how do we know there is not a
shorter path to v?

[Because if there was, we would already have discovered it!

o~

CSE 2011
YORKRE| _42- Last Updated 2014-03-18 8:09 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Correctness: More Complete Explanation

» Vertices are discovered in order of their distance from
the source vertex s.

» Suppose that at time {, we have discovered the set V of
all vertices that are a distance of d from s.

» Each vertex in the set V,, of all vertices a distance of
d+1 from s must be adjacent to a vertex in V,

» Thus we can correctly label these vertices by visiting all
vertices in the adjacency lists of vertices in V.

o~

CSE 2011
YORKE} _43- Last Updated 2014-03-18 8:09 AM
””””””””” Prof. J. Elder

IIIIIIIIII

Inductive Proof of BFS

Suppose at step i that the set of nodes S, with distance 6(v) < d. have been
discovered and their distance values d[v] have been correctly assigned.

Further suppose that the queue contains only nodes in S. with d values of d..

Any node v with 6(v)=d. +1 must be adjacent to S.

Any node v adjacentto S, but notin S, must have o6(v)=d. +1.

At step i +1, all nodes on the queue with d values of d. are dequeued and processed.

In so doing, all nodes adjacent to S are discovered and assigned d values of d. +1.

Thus after step / +1, all nodes v with distance 6(v) < d. +1 have been discovered
and their distance values d[v] have been correctly assigned.

Furthermore, the queue contains only nodes in S; with d values of d. +1.

CSE 2011
YORKN§ - 44- Last Updated 2014-03-18 8:09 AM
”””””””” > Prof. J. Elder

IIIIIIIIII

Correctness: Formal Proof

Input: Graph & =(V,E) (directed or undirected) and source vertex se /.

Output:
d[v]= distance 6(v) from s to v, Vv eV.
n[v] = u such that (u,v) is last edge on shortest path from s to v.

Two-step proof:
On exit:
1. d[v] = o(s,v)VveV

2. d[v]# o(s,v)VveV

CSE 2011
YORKHJ 45 - Last Updated 2014-03-18 8:09 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Claim 1. d is never too small: d[v]=o(s,v)VveV
Proof: There exists a path from s to v of length < d|[v].

By Induction:
Suppose it is true for all vertices thus far discovered (red and grey).

v is discovered from some adjacent vertex u being handled.

—d[v]=d[u]+1
> o(s,u)+1 > y
> 0(8,V) \/\2/‘
since each vertex v is assigned a d value exactly once,
it follows that on exit, d[v] > o(s,v)Vve V.

CSE 2011
YORKHJ 46 - Last Updated 2014-03-18 8:09 AM
EEEEEEEEE Prof. J. Elder

IIIIIIIIII

Claim 1. d is never too small: d[v] = o(s,v)VveV
BFS(G,s) Proof: There exists a path from s to v of length < d[v].

Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u e V[G]
d[u] <
n[u] < null S

color[u] = BLACK //initialize vertex V
colour[s] « RED u

d[s]« 0
Q.enqueue(s)
while Q # & AT '
<L|>: >
R LI>: d[v] > o(s,v)V 'discovered' (red or grey) ve V
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK

colour[v] < RED
divldlul+1 D> §(s,u)+1 = 8(s,v)
nlv]l«<u
Q.enqueue(v)
colour[u]l < GRAY
YORKE ' ~oE 2011 - 47 - Last Updated 2014-03-18 8:09 AM

Prof. J. Elder

IIIIIIIIII

Claim 2. d is never too big: d[v]<od(s,v)VveV

Proof by contradiction:
Suppose one or more vertices receive a d value greater than ¢.
Let v be the vertex with minimum o(s,v) that receives such a d value.

Suppose that v is discovered and assigned this d value when vertex x is dequeued.

Let u be v's predecessor on a shortest path from s to v.

Th _ _
T sew)<dly] siba=ei7] =1
— o(s,v)-1<d[v]-1 S
— d[u] < d[x] \%

d[u] = &(s,v)—1

Recall: vertices are dequeued in increasing order of d value.

— u was dequeued before x.
— d[v]=d[u]+1=0(s,v) Contradiction!

CSE 2011
YORKHJ 48 - Last Updated 2014-03-18 8:09 AM
UUUUUUUU ‘ Prof. J. Elder

UUUUUUUUUU

Correctness

Claim 1. d is never too small: d[v] = o(s,v)VveV
Claim 2. d is never too big: d[v]<d(s,v)VveV

= d is just right: d[v]=0(s,v)VveV

CSE 2011
YORK] _49 - Last Updated 2014-03-18 8:09 AM
““““““““ Prof. J. Elder

IIIIIIIIII

Progress? > On every iteration one vertex is processed (turns gray). —

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and

n[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u e V[G]
d[u] < o
n[u] < null
color[u] = BLACK //initialize vertex
colour[s] « RED
d[s]«< 0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK

colour[v] < RED
dlv] <« d[u]+1
nlv]«<u
Q.enqueue(v)
colour[u]l < GRAY <
UYORK ' CSE 2011 5.

NIVERSITE
||||||||||

Prof. J. Elder

Last Updated 2014-03-18 8:09 AM

Optimal Substructure Property

» The shortest path problem has the optimal substructure property:

O Every subpath of a shortest path is a shortest path.

shortest path
A

/ N
How would we Vv
prove this? S u

g N _

' '
shortest path shortest path

» The optimal substructure property
U is a hallmark of both greedy and dynamic programming algorithms.

O allows us to compute both shortest path distance and the shortest paths

themselves by storing only one d value and one predecessor value per
vertex.

CSE 2011
YORKQE P -51 - Last Updated 2014-03-18 8:09 AM

IIIIIIIIII

Recovering the Shortest Path

For each node v, store predecessor of v in (V).

s = TUTT(T(v))))

(T v)))
T V))

Predecessor of v is 7(v) = u. (V)

A’

CSE 2011
YORKHJ _52- Last Updated 2014-03-18 8:09 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

Recovering the Shortest Path

PRINT-PATH(G, s, v)
Precondition: s and v are vertices of graph &
Postcondition: the vertices on the shortest path from s to v have been printed in order
if v=5 then

prit s S = TI(T(T(v))))
else if z[v]=NIL then

print "no path from" s "to" v "exists"

5
} IeDRINT-PATH(é, s, n[v]) TC(R(R(V)))
print v n(n(V))
(V)
YORK § cee2om - 53 - a;%pdated 2014-03-18 8:09 AM

Prof. J. Elder

UUUUUUUUUU

BFS Algorithm without Colours
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors r[u] and shortest
distance d[u] from s to each vertex u in G has been computed
for each vertex u e V[G]
d[u] < oo
r[u] < null
d[s]«< O
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
e D
dv]< d[u]+1
w[v] < u
Q.enqueue(v)

CSE 2011
YORKQE P -54 - Last Updated 2014-03-18 8:09 AM

UUUUUUUUUU

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph

» Unweighted Shortest Path: Proof of Correctness

CSE 2011
YORKE} - 55- Last Updated 2014-03-18 8:09 AM
““““““““““ Prof. J. Elder

IIIIIIIIII

