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Graphs – Breadth First Search 
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Outline 

Ø BFS Algorithm 

Ø BFS Application: Shortest Path on an unweighted graph 

Ø Unweighted Shortest Path:  Proof of Correctness 
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Breadth-First Search 
Ø  Breadth-first search (BFS) is a general technique for traversing a graph 
Ø  A BFS traversal of a graph G  

q  Visits all the vertices and edges of G 

q  Determines whether G is connected 

q  Computes the connected components of G 

q  Computes a spanning forest of G 

Ø  BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time 

Ø  BFS can be further extended to solve other graph problems 
q  Cycle detection 

q  Find and report a path with the minimum number of edges between two 
given vertices  
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BFS Algorithm Pattern 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited

for each vertex u∈V [G] 
color[u] ←  BLACK //initialize vertex

colour[s] ←  RED
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
Q.enqueue(v)

colour [u]←GRAY
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BFS is a Level-Order Traversal 

Ø Notice that in BFS exploration takes place on a 
wavefront consisting of nodes that are all the same 
distance from the source s. 

Ø We can label these successive wavefronts by their 
distance:  L0, L1, … 
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BFS Example 
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BFS Example (cont.) 
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BFS Example (cont.) 
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Properties 
Notation 

Gs: connected component of s 
Property 1 

 BFS(G, s) visits all the vertices and 
edges of Gs  

Property 2 
 The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts of 
Gs 

Property 3 
 For each vertex v in Li 
q  The path of  Ts from s to v has i 

edges  
q  Every path from s to v in Gs has at 

least i edges 
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Analysis 

Ø Setting/getting a vertex/edge label takes O(1) time 

Ø Each vertex is labeled three times 
q once as BLACK (undiscovered) 

q once as RED (discovered, on queue) 

q once as GRAY (finished) 

Ø Each edge is considered twice (for an undirected graph) 

Ø Each vertex is placed on the queue once  

Ø  Thus BFS runs in O(|V|+|E|) time provided the graph is 
represented by an adjacency list structure 
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Applications 

Ø BFS traversal can be specialized to  solve the 
following problems in O(|V|+|E|) time: 
q Compute the connected components of G 

q Compute a spanning forest of G 

q Find a simple cycle in G, or report that G is a forest 

q Given two vertices of G, find a path in G between 
them with the minimum number of edges, or report 
that no such path exists 
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Outline 

Ø BFS Algorithm 

Ø BFS Application: Shortest Path on an unweighted 
graph 

Ø Unweighted Shortest Path:  Proof of Correctness 
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Application:  Shortest Paths on an Unweighted Graph 

Ø Goal: To recover the shortest paths from a source node 
s to all other reachable nodes v in a graph. 
q The length of each path and the paths themselves are returned. 

Ø Notes:   
q There are an exponential number of possible paths 

q Analogous to level order traversal for trees 

q This problem is harder for general graphs than trees because of 
cycles! 

s 

? 
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Breadth-First Search 

Ø  Idea:  send out search ‘wave’ from s. 

Ø  Keep track of progress by colouring vertices: 
q  Undiscovered vertices are coloured black 

q  Just discovered vertices (on the wavefront) are coloured red. 

q  Previously discovered vertices (behind wavefront) are coloured grey. 

Graph ( , ) (directed or undirected) and sourceInput:  vertex   .G V E s V= ∈
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BFS Algorithm with Distances and Predecessors 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and 
π [u] = predecessor of u on shortest path from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null 
color[u] = BLACK //initialize vertex

colour[s] ←  RED
d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)

colour [u]←GRAY
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Breadth-First Search Algorithm:  Properties 

Ø  Q is a FIFO queue. 

Ø  Each vertex assigned finite d 
value at most once. 

Ø  Q contains vertices with d 
values {i, …, i, i+1, …, i+1} 

Ø  d values assigned are 
monotonically increasing over 
time. 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and 
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null 
color[u] = BLACK //initialize vertex

colour[s] ←  RED
d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)

colour [u]←GRAY
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Breadth-First-Search is Greedy 

Ø Vertices are handled (and finished): 
q   in order of their discovery (FIFO queue) 

q Smallest d values first 
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Outline 

Ø BFS Algorithm 

Ø BFS Application: Shortest Path on an unweighted graph 

Ø Unweighted Shortest Path:  Proof of Correctness 
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Basic Steps: 

s 
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has length d 

v 

& there is an edge  
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Correctness:  Basic Intuition 

Ø When we discover v, how do we know there is not a 
shorter path to v? 
q Because if there was, we would already have discovered it! 

s 
u v d 
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Correctness:  More Complete Explanation 

Ø Vertices are discovered in order of their distance from 
the source vertex s. 

Ø Suppose that at time t1 we have discovered the set Vd of 
all vertices that are a distance of d from s. 

Ø Each vertex in the set Vd+1 of all vertices a distance of    
d+1 from s must be adjacent to a vertex in Vd 

Ø  Thus we can correctly label these vertices by visiting all 
vertices in the adjacency lists of vertices in Vd. 

s 
u v d 
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Inductive Proof of BFS 

  

Suppose at step i  that the set of nodes Si  with distance δ(v) ≤ di  have been 

discovered and their distance values d[v ] have been correctly assigned.

  Any node v  with δ(v) = di +1 must be adjacent to Si .

  Any node v  adjacent to Si  but not in Si  must have δ(v) = di +1.

  At step i +1, all nodes on the queue with d values of di  are dequeued and processed.

  

Thus after step i +1, all nodes v  with distance δ(v) ≤ di +1 have been discovered

and their distance values d[v ] have been correctly assigned.

  Further suppose that the queue contains only nodes in Si  with d  values of di .

  In so doing, all nodes adjacent to Si  are discovered and assigned d  values of di +1.   

  Furthermore, the queue contains only nodes in Si  with d  values of di +1.
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Correctness:  Formal Proof 

Graph ( , ) (directed or undirected) and sourceInput:  vertex   .G V E s V= ∈

  

Output:  
  d[v] =  distance δ(v) from s  to v,  ∀v ∈V .
  π[v] = u such that (u,v) is last edge on shortest path from s  to v .

1. [ ] ( , )d v s v v Vδ≥ ∀ ∈

2. [ ] ( , )  d v s v v Vδ> ∀ ∈/

Two-step proof: 

On exit: 
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δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V

  Proof:  There exists a path from s to v  of length ≤ d[v ].

By Induction:
Suppose it is true for all vertices thus far discovered (  an grre  d d ey).

 is discovered from some adjacent vertex  being handled.uv

→ = +[ ] [ ] 1d v d u
δ≥ +( , ) 1us
δ≥ ( , )s v u v 

s 

since each vertex  is assigned a  value exactly once, 
it follows that o [ ]n exit, ( ., )d v s v

v
v V
d

δ≥ ∀ ∈
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BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and 
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null 
color[u] = BLACK //initialize vertex

colour[s] ←  RED
d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)

colour [u]←GRAY

<LI>: [ ] ( , )  'disco rvered' (  o gr )eyred   d v s v v Vδ← ≥ ∀ ∈

( , ) 1s uδ≥ + ( , )s vδ≥

δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V
  Proof:  There exists a path from s to v  of length ≤ d[v ].

s 
u v 
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δ≤ ∀ ∈Claim 2.   is never too big:  [ ] ( , )  d d v s v v V
Proof by contradiction:

δSuppose one or more vertices receive a  value greater than .d

δLet  be the vertex with minimum ( , ) that receives such a  value.s dv v

Let  be 's predecessor on a shortest path from  to .u sv v

s 
u v 

Suppose that  is discovered and assigned this d value when vertex  is dequeued.v x

= −[ ] [ ] 1d x d v

δ= −[ ] ( , ) 1d s vu

δ <( , ) [ ]vs d v

  vertices are dequeued in increasing order of Reca  v .ll: alued
→  u was dequeued before x.

δ→ = + =[ ] [ ] 1 ( , )dvd u s v

x δ→ − < −( , ) 1 [ ] 1v d vs

→ <[ ] [ ]d u d x

Then

Contradiction! 
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Correctness 

δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V

δ≤ ∀ ∈Claim 2.   is never too big:  [ ] ( , )  d d v s v v V

δ⇒ = ∀ ∈ is just right:  [ ] ( , )  d d v s v v V
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Progress? Ø  On every iteration one vertex is processed (turns gray). 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and 
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null 
color[u] = BLACK //initialize vertex

colour[s] ←  RED
d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
colour[v]←RED
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)

colour [u]←GRAY
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Ø  The shortest path problem has the optimal substructure property: 
q  Every subpath of a shortest path is a shortest path. 

 

Ø  The optimal substructure property  
q  is a hallmark of both greedy and dynamic programming algorithms. 

q  allows us to compute both shortest path distance and the shortest paths 
themselves by storing only one d value and one predecessor value per 
vertex. 

Optimal Substructure Property 

u v s 

shortest path 

shortest path shortest path 

How would we  
prove this? 
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Recovering the Shortest Path 
For each node v, store predecessor of v in π(v). 

s 
u v 

Predecessor of v is 

π(v) 

π(v) = u. 
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Recovering the Shortest Path 

Precondition:   and  are vertices of graph 
Postcondition: the vertices on the shortest path from  to  have been prin
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BFS Algorithm without Colours 

  

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors π [u] and shortest 
distance d[u] from s to each vertex u in G has been computed

for each vertex u∈V [G]
d[u]←∞
π [u]← null 

d[s]← 0 
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if d[v ] = ∞
d[v ]← d[u]+1 
π [v ]← u
Q.enqueue(v)
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Outline 

Ø BFS Algorithm 

Ø BFS Application: Shortest Path on an unweighted graph 

Ø Unweighted Shortest Path:  Proof of Correctness 


