
Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 1 -

Graphs – Breadth First Search

ORD

DFW

SFO

LAX

80
2

1843

1233

337

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 2 -

Outline

Ø BFS Algorithm

Ø BFS Application: Shortest Path on an unweighted graph

Ø Unweighted Shortest Path: Proof of Correctness

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 3 -

Outline

Ø BFS Algorithm

Ø BFS Application: Shortest Path on an unweighted graph

Ø Unweighted Shortest Path: Proof of Correctness

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 4 -

Breadth-First Search
Ø  Breadth-first search (BFS) is a general technique for traversing a graph
Ø  A BFS traversal of a graph G

q  Visits all the vertices and edges of G

q  Determines whether G is connected

q  Computes the connected components of G

q  Computes a spanning forest of G

Ø  BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time

Ø  BFS can be further extended to solve other graph problems
q  Cycle detection

q  Find and report a path with the minimum number of edges between two
given vertices

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 5 -

BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited

for each vertex u∈V [G]
color[u] ← BLACK //initialize vertex

colour[s] ← RED
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
Q.enqueue(v)

colour [u]←GRAY

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 6 -

BFS is a Level-Order Traversal

Ø Notice that in BFS exploration takes place on a
wavefront consisting of nodes that are all the same
distance from the source s.

Ø We can label these successive wavefronts by their
distance: L0, L1, …

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 7 -

BFS Example

C B

A

E

D

discovery edge

cross edge

A discovered (on Queue)

A undiscovered

unexplored edge

L0

L1

F

C B

A

E

D
L1

F

C B

A

E

D

L0

L1

F

A finished

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 8 -

BFS Example (cont.)

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 9 -

BFS Example (cont.)

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 10 -

Properties
Notation

Gs: connected component of s
Property 1

 BFS(G, s) visits all the vertices and
edges of Gs

Property 2
 The discovery edges labeled by
BFS(G, s) form a spanning tree Ts of
Gs

Property 3
 For each vertex v in Li
q  The path of Ts from s to v has i

edges
q  Every path from s to v in Gs has at

least i edges

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 11 -

Analysis

Ø Setting/getting a vertex/edge label takes O(1) time

Ø Each vertex is labeled three times
q once as BLACK (undiscovered)

q once as RED (discovered, on queue)

q once as GRAY (finished)

Ø Each edge is considered twice (for an undirected graph)

Ø Each vertex is placed on the queue once

Ø  Thus BFS runs in O(|V|+|E|) time provided the graph is
represented by an adjacency list structure

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 12 -

END OF LECTURE
APRIL 1, 2014

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 13 -

Applications

Ø BFS traversal can be specialized to solve the
following problems in O(|V|+|E|) time:
q Compute the connected components of G

q Compute a spanning forest of G

q Find a simple cycle in G, or report that G is a forest

q Given two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 14 -

Outline

Ø BFS Algorithm

Ø BFS Application: Shortest Path on an unweighted
graph

Ø Unweighted Shortest Path: Proof of Correctness

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 15 -

Application: Shortest Paths on an Unweighted Graph

Ø Goal: To recover the shortest paths from a source node
s to all other reachable nodes v in a graph.
q The length of each path and the paths themselves are returned.

Ø Notes:
q There are an exponential number of possible paths

q Analogous to level order traversal for trees

q This problem is harder for general graphs than trees because of
cycles!

s

?

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 16 -

Breadth-First Search

Ø  Idea: send out search ‘wave’ from s.

Ø  Keep track of progress by colouring vertices:
q  Undiscovered vertices are coloured black

q  Just discovered vertices (on the wavefront) are coloured red.

q  Previously discovered vertices (behind wavefront) are coloured grey.

Graph (,) (directed or undirected) and sourceInput: vertex .G V E s V= ∈

[] shortest path distance (,) from to , .
 [] such that (,) is las

Outpu

t edg

t:

e on shortest path from a to

 .
d v s v s v v V

v u u v s v
δ

π
= ∀ ∈
=

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 17 -

BFS Algorithm with Distances and Predecessors

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and
π [u] = predecessor of u on shortest path from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null
color[u] = BLACK //initialize vertex

colour[s] ← RED
d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

colour [u]←GRAY

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 18 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

First-In First-Out (FIFO) queue
stores ‘just discovered’ vertices

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 19 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

s

d=0

d=0

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 20 -

BFS Found
Not Handled

Queue

d=0
a

b
g
d

d=1

s

a

c

h

k

f

i

l

m

j

e

b

g
d

d=0
d=1

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 21 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

a

b
g
d

d=0
d=1

d=1

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 22 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

b
g
d

c
f

d=0
d=1

d=2

d=1

d=2

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 23 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

b
g

c
f
m
e

d=0
d=1

d=2

d=1

d=2

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 24 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

b

j

c
f
m
e

d=1

d=2

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 25 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

j

c
f
m
e

d=1

d=2

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 26 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

c
f
m
e
j

d=0
d=1

d=2

d=2

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 27 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

f
m
e
j
h
i

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 28 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

m
e
j
h
i

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 29 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

e
j
h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 30 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

j
h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 31 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 32 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

h

d=0
d=1

d=2

d=3

i
l

d=3

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 33 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

i
l
k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 34 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

l
k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 35 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 36 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

k

d=0
d=1

d=2

d=3 d=4

d=4

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 37 -

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

d=3 d=4

d=4
d=5

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 38 -

Breadth-First Search Algorithm: Properties

Ø  Q is a FIFO queue.

Ø  Each vertex assigned finite d
value at most once.

Ø  Q contains vertices with d
values {i, …, i, i+1, …, i+1}

Ø  d values assigned are
monotonically increasing over
time.

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null
color[u] = BLACK //initialize vertex

colour[s] ← RED
d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

colour [u]←GRAY

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 39 -

Breadth-First-Search is Greedy

Ø Vertices are handled (and finished):
q  in order of their discovery (FIFO queue)

q Smallest d values first

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 40 -

Outline

Ø BFS Algorithm

Ø BFS Application: Shortest Path on an unweighted graph

Ø Unweighted Shortest Path: Proof of Correctness

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 41 -

Basic Steps:

s
u

The shortest path to u
has length d

v

& there is an edge
from u to v

There is a path to v with length d+1.

Correctness

d

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 42 -

Correctness: Basic Intuition

Ø When we discover v, how do we know there is not a
shorter path to v?
q Because if there was, we would already have discovered it!

s
u v d

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 43 -

Correctness: More Complete Explanation

Ø Vertices are discovered in order of their distance from
the source vertex s.

Ø Suppose that at time t1 we have discovered the set Vd of
all vertices that are a distance of d from s.

Ø Each vertex in the set Vd+1 of all vertices a distance of
d+1 from s must be adjacent to a vertex in Vd

Ø  Thus we can correctly label these vertices by visiting all
vertices in the adjacency lists of vertices in Vd.

s
u v d

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 44 -

Inductive Proof of BFS

Suppose at step i that the set of nodes Si with distance δ(v) ≤ di have been

discovered and their distance values d[v] have been correctly assigned.

 Any node v with δ(v) = di +1 must be adjacent to Si .

 Any node v adjacent to Si but not in Si must have δ(v) = di +1.

 At step i +1, all nodes on the queue with d values of di are dequeued and processed.

Thus after step i +1, all nodes v with distance δ(v) ≤ di +1 have been discovered

and their distance values d[v] have been correctly assigned.

 Further suppose that the queue contains only nodes in Si with d values of di .

 In so doing, all nodes adjacent to Si are discovered and assigned d values of di +1.

 Furthermore, the queue contains only nodes in Si with d values of di +1.

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 45 -

Correctness: Formal Proof

Graph (,) (directed or undirected) and sourceInput: vertex .G V E s V= ∈

Output:
 d[v] = distance δ(v) from s to v, ∀v ∈V .
 π[v] = u such that (u,v) is last edge on shortest path from s to v .

1. [] (,)d v s v v Vδ≥ ∀ ∈

2. [] (,) d v s v v Vδ> ∀ ∈/

Two-step proof:

On exit:

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 46 -

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V

 Proof: There exists a path from s to v of length ≤ d[v].

By Induction:
Suppose it is true for all vertices thus far discovered (an grre d d ey).

 is discovered from some adjacent vertex being handled.uv

→ = +[] [] 1d v d u
δ≥ +(,) 1us
δ≥ (,)s v u v

s

since each vertex is assigned a value exactly once,
it follows that o []n exit, (.,)d v s v

v
v V
d

δ≥ ∀ ∈

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 47 -

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null
color[u] = BLACK //initialize vertex

colour[s] ← RED
d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

colour [u]←GRAY

: [] (,) 'disco rvered' (o gr)eyred d v s v v Vδ← ≥ ∀ ∈

(,) 1s uδ≥ + (,)s vδ≥

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V
 Proof: There exists a path from s to v of length ≤ d[v].

s
u v

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 48 -

δ≤ ∀ ∈Claim 2. is never too big: [] (,) d d v s v v V
Proof by contradiction:

δSuppose one or more vertices receive a value greater than .d

δLet be the vertex with minimum (,) that receives such a value.s dv v

Let be 's predecessor on a shortest path from to .u sv v

s
u v

Suppose that is discovered and assigned this d value when vertex is dequeued.v x

= −[] [] 1d x d v

δ= −[] (,) 1d s vu

δ <(,) []vs d v

 vertices are dequeued in increasing order of Reca v .ll: alued
→ u was dequeued before x.

δ→ = + =[] [] 1 (,)dvd u s v

x δ→ − < −(,) 1 [] 1v d vs

→ <[] []d u d x

Then

Contradiction!

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 49 -

Correctness

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V

δ≤ ∀ ∈Claim 2. is never too big: [] (,) d d v s v v V

δ⇒ = ∀ ∈ is just right: [] (,) d d v s v v V

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 50 -

Progress? Ø  On every iteration one vertex is processed (turns gray).

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance δ [u] and
π [u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u∈V [G]
d[u]←∞
π [u]← null
color[u] = BLACK //initialize vertex

colour[s] ← RED
d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
colour[v]←RED
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

colour [u]←GRAY

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 51 -

Ø  The shortest path problem has the optimal substructure property:
q  Every subpath of a shortest path is a shortest path.

Ø  The optimal substructure property
q  is a hallmark of both greedy and dynamic programming algorithms.

q  allows us to compute both shortest path distance and the shortest paths
themselves by storing only one d value and one predecessor value per
vertex.

Optimal Substructure Property

u v s

shortest path

shortest path shortest path

How would we
prove this?

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 52 -

Recovering the Shortest Path
For each node v, store predecessor of v in π(v).

s
u v

Predecessor of v is

π(v)

π(v) = u.

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 53 -

Recovering the Shortest Path

Precondition: and are vertices of graph
Postcondition: the vertices on the shortest path from to have been prin

P

if then

RINT-PATH(, ,)

pr

print

ted in o

else

int
if

rd

then [] I
"

e

L

r

N

s v G
s v

s

v

v

s
s

G

v

π

=

=

else
no path from" "to" "exists"

PRINT-PATH(, , [])
print

s v

G s v
v

π

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 54 -

BFS Algorithm without Colours

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors π [u] and shortest
distance d[u] from s to each vertex u in G has been computed

for each vertex u∈V [G]
d[u]←∞
π [u]← null

d[s]← 0
Q.enqueue(s)
while Q ≠ ∅

u← Q.dequeue()
for each v ∈Adj[u] //explore edge (u,v)

if d[v] = ∞
d[v]← d[u]+1
π [v]← u
Q.enqueue(v)

Last Updated 2014-03-18 8:09 AM
CSE 2011
Prof. J. Elder - 55 -

Outline

Ø BFS Algorithm

Ø BFS Application: Shortest Path on an unweighted graph

Ø Unweighted Shortest Path: Proof of Correctness

